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Abstract
This is a survey of the application of the classical R-matrix formalism to
the construction of infinite-dimensional integrable Hamiltonian field systems.
The main point is the study of bi-Hamiltonian structures. Appropriate
constructions on Poisson, noncommutative and loop algebras as well as the
central extension procedure are presented. The theory is developed for (1+1)-
and (2+1)-dimensional field and lattice soliton systems as well as hydrodynamic
systems. The formalism presented contains sufficiently many proofs and
important details to make it self-contained and complete. The general theory is
applied to several infinite-dimensional Lie algebras in order to construct both
dispersionless and dispersive (soliton) integrable field systems.

PACS number:
Mathematics Subject Classification: 37K10, 37K05, 37K30

1. Introduction

Finding a systematic method for the construction of integrable nonlinear systems is one of the
most important issues in the theory of evolutionary systems. A very powerful tool called the
classical R-matrix formalism [81] has proved to be very fruitful in the systematic construction
of the field and lattice soliton systems as well as dispersionless systems. The crucial point of
the formalism is the observation that integrable dynamical systems can be obtained from the
Lax equations on appropriate Lie algebras. Besides, a huge part of integrable field systems
possessing Lax representation can be obtained within the classical R-matrix formalism, if not
all of them. The greatest advantage of this formalism, besides the possibility of systematic
construction of the integrable systems, is the construction of bi-Hamiltonian structures and
(infinite) hierarchies of symmetries and conserved quantities.

The ideas of the R-matrix theory date back to the world renowned ‘St Petersburg School’
represented by Faddeev, Reyman, Sklyanin, Semenov-Tian-Shansky and others (see [31] and
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references therein). The abstract formalism of classical R-matrices appeared in the paper [86]
by Sklyanin as an intermediate step within the inverse quantum scattering method and was
further developed by Belavin and Drinfel’d [6, 26]. The present version of the formalism,
together with definition 2.1 of the classical R-matrix, was given by Semenov-Tian-Shansky
in [81].

One of the most characteristic features of integrable nonlinear systems is the existence
of bi-Hamiltonian structures. This ingenious concept was introduced by Magri [58] in 1978.
From the geometrical point of view, this means that there exists a pair of compatible Poisson
tensors which allow us, using a recursion chain, to generate infinite (in the infinite-dimensional
case) hierarchies of commuting symmetries and constants of motion being in involution with
respect to the above Poisson tensors. In order to stress the importance of the bi-Hamiltonian
structures for evolution systems let us quote Dickey3.

The existence of two compatible Poisson (or Hamiltonian) structures is a remarkable
feature of most, if not all, integrable systems, sometimes it is considered as the
essence of the integrability.

For the theory of infinite-dimensional bi-Hamiltonian systems we refer the reader to the
following references [8, 23, 25, 68].

The goal of this paper is to present an introductory survey of the formalism of classical
R-matrices applied to infinite-dimensional Lie algebras in order to construct integrable
systems with infinitely many degrees of freedom and related Hamiltonian and bi-Hamiltonian
structures.

In the first part of the paper (section 2), we present in a systematic fashion the concept
of classical R-matrix formalism with many proofs and important details to make the text self-
contained and complete. First of all we present the basics of the formalism, where concepts
of Lax hierarchies, Lie–Poisson structures and ad-invariant scalar products are explained.
Next, we present the construction of integrable hierarchies with multi-Hamiltonian structures
on Poisson and noncommutative algebras, respectively. Then, we show how to extend the
whole formalism via the so-called central extension procedure. Finally, we apply the classical
R-matrix formalism to loop algebras taking also into consideration the central extension
approach.

We would like to point out that the structure of section 2 reflects the applications of the
classical R-matrix formalism in the following sections. Besides, its content is chosen in such
a way that the reader not familiar with the theory presented could fully understand all results
of sections 3 and 4 without any additional assistance.

In the second part of the paper, we apply the formalism developed in the first part to several
important Lie algebras with the aim of the construction of (1+1)- and (2+1)-dimensional
integrable hierarchies together with their Hamiltonian (multi-Hamiltonian) representation.
Section 3 deals with dispersionless or equivalently hydrodynamic systems, where two kinds
of algebras are considered. As the first case, we consider the case of Poisson algebras and
related bi-Hamiltonian dispersionless systems. As the second case, we consider the so-
called universal hierarchy, based on the Lie algebra of vector fields on the circle, and related
dispersionless systems. In both cases the central extension approach is also applied. In section
4, the construction of soliton hierarchies, i.e. integrable systems with dispersion, is presented.
What is important, in the first two subsections the theory is developed in such a way that it
covers in a single unified formalism not only standard lattice and field soliton systems, but
also q-deformed ones. The Lie algebras of shift operators and generalized pseudo-differential

3 [23], p 43.
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operators are used here. Finally, the application of the classical R-matrix formalism to the
loop algebras is illustrated on the example of sl(2, C) semi-simple Lie algebra. All the above
applications and related Lie algebras lead to the construction of a huge number of specific
integrable systems among which we present explicitly only a few of them, referring the reader
to the cited references for further examples.

In the following survey, classical R-matrix theory is presented in the framework of an
appropriate infinite-dimensional Lie algebra, with the aim of construction of integrable bi-
Hamiltonian systems. However, the formalism is significantly more powerful as for example
it is intimately connected with factorization and Riemann–Hilbert problems for the related Lie
groups [81]. Besides we completely neglect here the theory of finite-dimensional systems,
thus for more information and the complete theory of classical R-matrices we send the reader
to the original papers [78, 79, 81] as well as reviews [63, 82, 83] and book [31].

2. Classical R-matrix theory

In this section, we will present a unified approach to the construction of integrable evolution
equations together with their (multi-)Hamiltonian structures. The idea originates from the
pioneering article [40] by Gelfand and Dickey, where they presented a construction of
Hamiltonian soliton systems of KdV type using pseudo-differential operators. Next, Adler [2]
showed how to construct the bi-Hamiltonian structures for the above soliton systems using the
method based on the Kostant–Symes theorem obtained independently in [50, 92]. Later the
abstract formalism of classical R-matrices was formulated by Semenov-Tian-Shansky [81] and
further developed together with Reyman [79]. In [56, 66] it was shown that there are in fact
three natural Poisson brackets associated with classical R-structures. Quite recently Li [55]
considered the classical R-matrix theory on the so-called (commutative) Poisson algebras.
This approach leads to the construction of multi-Hamiltonian systems of hydrodynamic
(dispersionless) type.

2.1. Classical R-matrices

Let g be a Lie algebra over the field K of complex or real numbers, K = C or R, that is,
g is equipped with a bilinear operation [·, ·] : g × g → g, called a Lie bracket, which is
skew-symmetric and satisfies the Jacobi identity. The Lie bracket [·, ·] defines the adjoint
action of g on g: adab ≡ [a, b].

Definition 2.1 [81]. A linear map R : g → g such that the operation

[a, b]R := [Ra, b] + [a,Rb] a, b ∈ g (1)

defines another Lie bracket on g is called the classical R-matrix.

The skew-symmetry of (1) is obvious. As for the Jacobi identity for (1), we find that

0 = [a, [b, c]R]R + c.p. = [Ra, [Rb, c]] + [Ra, [b,Rc]] + [a,R[b, c]R] + c.p.

= [Rb, [Rc, a]] + [Rc, [a,Rb]] + [a,R[b, c]R] + c.p.

= [a,R[b, c]R − [Rb,Rc]] + c.p., (2)

where c.p. stands for cyclic permutations within the triple {a, b, c} ∈ g, and the last equality
follows from the Jacobi identity for [·, ·]. Hence, a sufficient condition for R to be a classical
R-matrix is to satisfy the so-called (modified) Yang–Baxter equation, YB(α):

[Ra,Rb] − R[a, b]R + α[a, b] = 0, (3)

3
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where α is a number from K. There are only two relevant cases of YB(α), namely α �= 0 and
α = 0, as all Yang–Baxter equations with α �= 0 are equivalent up to a rescaling of α.

Definition 2.2. A linear operator A : g → g is called intertwining if A ◦ ada = ada ◦ A, i.e.,
if A[a, b] = [Aa, b] = [a,Ab] for any a, b ∈ g.

Proposition 2.3 [79]. If R is a classical R-matrix and A is an intertwining operator that is
nondegenerate, i.e. ker A = 0, then R ◦ A also is a classical R-matrix.

Proof. We have

RA[a, b]RA = RA[RAa, b] + RA[a,RAb]

= R[RAa,Ab] + R[Aa,RAb] = R[Aa,Ab]R.

Hence,

[RAa,RAb] − RA[a, b]RA = [RAa,RAb] − R[Aa,Ab]R

and the Jacobi identity for [·, ·]RA with respect to the elements a, b, c ∈ g reduces to the Jacobi
identity for [·, ·]R with respect to the elements Aa,Ab,Ac, see (2). �

In fact, the nondegeneracy condition of A in the above proposition can be omitted, see
[79]. Note that a linear combination of intertwining operators again is an intertwining operator.

2.2. Lax hierarchy

In this section, we present the classical R-matrix formalism for the class of Lie algebras for
which the Lie bracket additionally satisfies the Leibniz rule. Later, while considering the loop
algebras in section 2.10, we shall drop this extra condition.

Assume that the Lie algebra g is also an algebra with respect to an associative
multiplication such that

ada(bc) = ada(b)c + bada(c) ⇐⇒ [a, bc] = [a, b]c + b[a, c] (4)

the Leibniz rule holds, i.e., the Lie bracket [·, ·] is a derivation with respect to the multiplication.
Note that this condition is satisfied automatically in the case of a commutative algebra g when
the Lie bracket is given by a finite-dimensional Poisson bracket, as well as in the case of a
non-commutative algebra g with the Lie bracket given by the commutator.

In the construction of integrable hierarchies an important role is played by smooth maps
X : g → g, L 	→ X(L) being invariants of the Lie bracket, or equivalently ad-invariant, that
is they are such that

adLX(L) = 0 ⇐⇒ [X(L), L] = 0. (5)

The smoothness of the mapping X means that its differential and directional derivatives exist
and are well defined.

As a consequence of the above assumption (4), any map X(L) being differentiable map
of a single variable L is an invariant: [X(L), L] = 0, since it is assumed that the adjoint
action of the Lie bracket is a derivation of the associative multiplication in the algebra. The
natural choice for invariant smooth functions is the power functions Xn(L) = Ln that are
always well defined on g equipped with an associative multiplication. One can consider less
trivial functions, for example the logarithmic ones, like X(L) = ln L, but only when they have
proper interpretation in g.

4
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Proposition 2.4. Smooth invariant functions Xn(L) generate a hierarchy of vector fields on g

of the form

Ltn = [RXn(L), L] L ∈ g n ∈ Z, (6)

where tn are evolution parameters. Assuming that a classical R-matrix R commutes with the
directional derivatives with respect to all (6), the Yang–Baxter equation (3) is a sufficient
condition for the pairwise commutativity of the vector fields (6).

Proof. The directional derivative of a smooth function F : g → g in the direction of (6) is
given by

F(L)tn = F(L)′
[
Ltn

] = [RXn(L), F (L)], (7)

which follows from the Leibniz rule (4). Thus, one finds that(
Ltm

)
tn

− (
Ltn

)
tm

= [RXm(L), L]tn − [RXn(L), L]tm

= [
(RXm(L))tn − (RXn(L))tm, L

]
+ [RXm(L), [RXn(L), L]]

− [RXn(L), [RXm(L), L]]

= [
(RXm(L))tn − (RXn(L))tm + [RXm(L),RXn(L)], L

]
. (8)

Hence, for the pairwise commutativity of vector fields (6) it suffices that the so-called zero-
curvature equations

(RXm(L))tn − (RXn(L))tm + [RXm(L),RXn(L)] = 0 (9)

hold.
The assumption that R commutes with directional derivatives implies that it commutes

with the derivatives with respect to evolution parameters, i.e.,

(RL)tn = RLtn . (10)

Thus, the right-hand side of (9) becomes

R(Xm(L))tn − R(Xn(L))tm + [RXm(L),RXn(L)]
by(7)= R[RXn(L),Xm(L)] − R[RXm(L),Xn(L)] + [RXm(L),RXn(L)]

= [RXm(L),RXn(L)] − R[Xm(L),Xn(L)]R. (11)

Now, if the R-matrix R satisfies the Yang–Baxter equation (3) then the last expression is equal
to −α[Xm(L),Xn(L)] = 0, and the result follows. �

The hierarchy (6) is called the Lax hierarchy and L is called the Lax operator or the Lax
function depending on the nature of a given Lie algebra g. Note that the assumption that R
commutes with directional derivatives is an important condition although is not enunciated
explicitly in most works on the R-matrices.

It is natural to ask when the abstract Lax hierarchy (6) represents a ‘real’ hierarchy of
integrable evolution systems on a suitable function space constituting an infinite-dimensional
phase space U . This occurs when we can construct an embedding map ι : U → g, which
induces the differential structure on g. Note that for ι being an embedding its differential
ι′ : V → g is an injective map, where V is a space of vector fields on U . In such a case the Lax
hierarchy (6) can be pulled back to the original function space by ι′−1. The symmetries from
the Lax hierarchy (6) represent compatible evolution systems when the left- and right-hand
sides of (6) span the same subspace of g. So, the Lax element L of g has to be chosen in a
suitable fashion.

5
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2.3. Simplest R-matrices

The simplest way to obtain a classical R-matrix is to decompose a given Lie algebra into Lie
subalgebras. Thus, assume that a Lie algebra g can be split into a (vector) direct sum of Lie
subalgebras g+ and g−, i.e.,

g = g+ ⊕ g− [g±, g±] ⊂ g± g+ ∩ g− = ∅.

It is important to stress that we do not require that [g+, g−] = 0.
Upon denoting the projections onto the subalgebras in question by P±, we define a linear

map R : g → g as

R = 1
2 (P+ − P−). (12)

Using the equality P+ + P− = 1 (12) can be represented in the following equivalent forms:

R = P+ − 1
2 = 1

2 − P−. (13)

Let a± := P±(a) for a ∈ g. Then

[a, b]R = [a+, b+] − [a−, b−] �⇒ R[a, b]R = 1
2 [a+, b+] + 1

2 [a−, b−]

and

[Ra,Rb] = 1
4 [a+, b+] − 1

4 [a+, b−] − 1
4 [a−, b+] + 1

4 [a−, b−].

Hence, the map (12) satisfies the Yang–Baxter equation (3) for α = 1
4 and is a well-defined

classical R-matrix. This is the simplest and the most common example of a well-defined
R-matrix.

For instance, the Lax hierarchy (6) for the R-matrix (12), following from the decomposition
of a Lie algebra into Lie subalgebras, takes the form

Ltn = [(Xn(L))+, L] = −[(Xn(L))−, L].

It can be written in two equivalent ways because (13) holds.
The construction of the majority of known integrable systems within the formalism

presented above is based on the classical R-matrices that follow from the double decomposition
(12) of Lie algebras into Lie subalgebras. In [64, 84, 88, 94], the authors considered
deformations of (12) that preserve the Yang–Baxter equation and originate from a triple
decomposition of a given Lie algebra; see also [96] for multiple decompositions of Lie
algebras.

2.4. Lie–Poisson structures

Let g∗ be a (regular) dual of a given Lie algebra g and 〈·, ·〉 : g∗ × g → K be the usual duality
pairing. The co-adjoint action ad∗ of g on g∗ is defined through the relation

〈ad∗
aη, b〉 + 〈η, adab〉 = 0 ⇐⇒ 〈ad∗

aη, b〉 = −〈η, [a, b]〉, (14)

where a, b ∈ g and η ∈ g∗.
Let this time ι : U → g∗ be the embedding of the original phase space into the dual Lie

algebra. Then every functional F : U → K can be extended to a smooth function on g∗.
Therefore, let C∞(g∗) be the space of all smooth functions on g∗ of the form F ◦ ι−1 : g� → K,
where F ∈ C∞(U). Then the differentials dF(η) of F(η) ∈ C∞(g∗) at the point η ∈ g∗ belong
to g as they can be evaluated using the relation

F(η)′[ξ ] ≡ dF(η + εξ)

dε

∣∣∣∣
ε=0

= 〈ξ, dF(η)〉 ξ ∈ g∗ ε ∈ K. (15)

6



J. Phys. A: Math. Theor. 42 (2009) 404002 M Błaszak and B M Szablikowski

Moreover, the form of differentials dF ∈ g has to be such that the duality pairing between
g and its dual g∗ coincides with the duality map between vector fields and 1-forms on the
original infinite-dimensional function phase space U . Indeed,

〈ηt , dF 〉 =
∫ ∞∑

i=0

δF

δui

(ui)t dx, (16)

where ηt ∈ g∗ is a vector field on g∗, F (η) ∈ C∞(g∗) is a functional depending on the
dynamical fields ui from the phase space U, δF

δui
is the variational derivative of F with respect

to field variable ui .
The aim of the considered formalism is the construction of infinite-dimensional field

systems in (1+1) and (2+1) dimensions. Thus, the duality map for the abstract algebra g must
be in agreement with the duality pairing between vector fields and variational differentials
from the original functional phase space. Thus, the pairing as well as functionals must be
given by appropriate integrals over space coordinates or respective summations in a discrete
case.

We also have the relation

〈ξ, dF ′[η]〉 = 〈η, dF ′[ξ ]〉, (17)

which is equivalent to the vanishing of the square of the exterior differential, i.e., d2F = 0.4

We also make an additional assumption that the Lie bracket in g is such that directional
derivative along an arbitrary ξ ∈ g� is a derivation of the Lie bracket. This means that the
following relation holds:

[a, b]′[ξ ] = [a′[ξ ], b] + [a, b′[ξ ]]. (18)

Theorem 2.5. There exists a Poisson bracket on the space of smooth functions on a dual
algebra g∗, which is induced by the Lie bracket on g. This Poisson bracket is defined as
follows:

{H,F }(η) := 〈η, [dF, dH ]〉 η ∈ g∗ H,F ∈ C∞(g∗). (19)

In the case of finite-dimensional smooth manifolds the proof of the above theorem is
straightforward as it is enough to consider structure constants. In the infinite-dimensional case
the situation is more complex, so we give the ‘coordinate-free’ proof valid in both cases.

Lemma 2.6. The differential of (19) is given by

d{H,F } = [dF, dH ] + dF ′[ad∗
dH η] − dH ′[ad∗

dF η]. (20)

Proof. By (15) we find that

{H,F }′[ξ ] = 〈η′[ξ ], [dF, dH ]〉 + 〈η, [dF ′[ξ ], dH ] + [dF, dH ′[ξ ]]〉
by(14)= 〈ξ, [dF, dH ]〉 + 〈ad∗

dHη, dF ′[ξ ]〉 − 〈ad∗
dF η, dH ′[ξ ]〉

by(17)= 〈ξ, [dF, dH ] + dF ′[ad∗
dH η] − dH ′[ad∗

dF η]〉,
and the result follows. �
4 The exterior differential can be uniquely defined on g∗ by means of directional derivative, i.e. dω(ξ1, . . . , ξq+1) =∑

i (−1)i+1ω′[ξi ](ξ1, . . . , ξ̂i , . . . , ξq+1), where ω is a q-form and ξi ∈ g∗.

7
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Proof of theorem 2.5. Bilinearity and skew-symmetry of (19) are obvious, so we only have
to prove the Jacobi identity:

{F, {G,H }} + c.p. = 〈η, [d{G,H }, dH ] + c.p.〉
by(20)= 〈η, [[dH, dG], dF ] + [dH ′[ad∗

dGη], dF ] − [dG′[ad∗
dHη], dF ] + c.p.〉

by(14)= 〈η, [[dH, dG], dF ]〉 + 〈ad∗
dF η, dH ′[ad∗

dGη]〉 − 〈ad∗
dF η, dG′[ad∗

dH η]〉 + c.p.

by c.p.= 〈η, [[dH, dG], dF ]〉 + 〈ad∗
dF η, dH ′[ad∗

dGη]〉 − 〈ad∗
dGη, dH ′[ad∗

dF η]〉 + c.p.

by(17)= 〈η, [[dH, dG], dF ] + c.p.〉 = 0,

where the last equality follows from the Jacobi identity for [·, ·]. �

Bracket (19) is called a (natural) Lie–Poisson bracket and was originally discovered by
Sophus Lie. Its modern formulation is due to Berezin [7] as well as Kirillov and Kostant [47].

Now assume that we have an additional Lie bracket (1) on g defined through the classical
R-matrix such that (10) is valid. Then (1) satisfies condition (18). As a result, there is another
well-defined (by theorem 2.5) Lie–Poisson bracket on the space of scalar fields C∞(g∗):

{H,F }R(η) := 〈η, [dF, dH ]R〉 η ∈ g∗ H,F ∈ C∞(g∗). (21)

Using (14) we find that the associated Poisson operators at η ∈ g∗, the one for the natural
Lie–Poisson bracket (19) and the second one, (21), have the form

{H,F } = 〈π dH, dF 〉 ⇐⇒ π : dH 	→ ad∗
dHη

{H,F }R = 〈πR dH, dF 〉 ⇐⇒ πR : dH 	→ ad∗
RdH η + R∗ad∗

dH η,

where the adjoint of R is defined by the relation 〈R∗η, a〉 = 〈η,Ra〉, where η ∈ g∗ and a ∈ g.
The following theorem constitutes the essence of the classical R-matrix formalism.

Theorem 2.7 [81]. The Casimir functions Cn ∈ C∞(g∗) of the natural Lie–Poisson bracket
(19) are in involution with respect to the Lie–Poisson bracket (21) induced by (1). Moreover,
Cn generate a hierarchy of vector fields on g∗:

ηtn = πR dCn(η) = ad∗
RdCn

η η ∈ g∗. (22)

The evolution systems (22) pairwise commute, i.e., (ηtm)tn = (ηtn)tm , and are Hamiltonian with
respect to (21). Moreover, any equation from (22) admits all Casimir functions Cn of (19) as
integrals of motion.

Proof. The Casimir functions Cn of the natural Lie–Poisson bracket (19) satisfy the following
condition:

∀F ∈ C∞(g∗) {F,Cn} = 0 ⇐⇒ ad∗
dCn

η = 0,

that is, their differentials are ad∗-invariant. Hence, they are in involution with respect to the
Lie–Poisson bracket (21), i.e., {Cn,Cm}R = 0. Now, as πRd is a Lie algebra homomorphism
from the Poisson algebra of smooth functions on g∗ to the Lie algebra of vector fields on g∗,
commutativity of Hamiltonian vector fields (22), with the Casimir functions as Hamiltonians,
readily follows. �

In fact, when the R-matrix follows from the decomposition of an Lie algebra into a sum of
Lie subalgebras, i.e. R is given by (12), then theorem 2.7 can be considered as a generalization
of the Kostant–Symes theorem [50, 92].

The construction of Casimir functions Cn and related dynamical systems (22) on the dual
Lie algebra g∗ is, in contrast with (6), often inconvenient and impractical. Thus, a formulation
of a similar theory on g instead on g∗ is often justified. This can be done when one can identify
g∗ with g by means of a suitable scalar product.

8
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2.5. Ad-invariant scalar products

We restrict our further considerations to the Lie algebras g for which their duals g∗ can be
identified with g through a duality map. So, we assume the existence of a bilinear scalar
product

(·, ·)g : g × g → K (23)

on g, such that it is symmetric: (a, b)g = (b, a)g, and non-degenerate, that is, a = 0 is the
only element of g that satisfies (a, b)g = 0 for all b ∈ g. Then we can identify g∗ with g

(g∗ ∼= g) by setting 〈η, b〉 = (c, b)g,∀ b ∈ g, where η ∈ g∗ is identified with c ∈ g.
We also make an additional assumption that the symmetric product (23) is ad-invariant,

i.e.,

([a, c], b)g + (c, [a, b])g = 0. (24)

This is a counterpart of relation (14). Thus, if η ∈ g∗ is identified with c ∈ g we have
〈ad∗

aη, b〉 = ([a, c], b)g and one identifies ad∗
aη ∈ g∗ with adac ∈ g.

In fact, under the above assumptions and by virtue of the scheme presented in the previous
section all equations from the hierarchy (6) in principle are Hamiltonian. Since g∗ ∼= g, the
Lie–Poisson brackets (19) and (21) on the space of scalar fields C∞(g ∼= g∗) at L ∈ g take the
form

{H,F } = (L, [dF, dH ])g = (dF, πdH)g ⇐⇒ π dH = [dH,L]
(25)

{H,F }R = (L, [dF, dH ]R)g = (dF, πR dH)g ⇐⇒ πR dH = [R dH,L] + R∗[dH,L],

where now R∗ is defined by the relation (R∗a, b)g = (a, Rb)g.
Differentials of the Casimir functions Cn(L) ∈ C∞(g) of the natural Lie–Poisson bracket

are invariants of the Lie bracket, i.e., [dCn(L), L] = 0. Obviously, the Casimir functions are
still in involution with respect to the second Lie–Poisson bracket defined by R and generate
pairwise commuting Hamiltonian vector fields of the form

Ltn = πR dCn(L) = [R dCn,L]. (26)

Note that the Lax hierarchy (6) coincides with (26) for Xn = dCn. Moreover, it follows
that if there exists a symmetric, non-degenerate and ad-invariant product on g then the Yang–
Baxter equation (3) is not a necessary condition for the commutativity of vector fields from
the Lax hierarchy (6). However, if (3) is not satisfied then the zero-curvature equations (9)
will not be automatically satisfied as well.

The simplest way to define an appropriate scalar product on a Lie algebra g is to use a
trace form Tr : g → K such that the scalar product

(a, b)g := Tr(ab) a, b ∈ g (27)

is nondegenerate. In this case the symmetry of (27) entails that

Tr(ab) = Tr(ba). (28)

Lemma 2.8. Let Tr : g → K be a trace form defining a symmetric and nondegenerate scalar
product (27) such that the trace of the Lie bracket vanishes, i.e. Tr[a, b] = 0 for all a, b ∈ g.
Then condition (4) for the Lie bracket to be a derivation with respect to the multiplication is
a sufficient condition for (27) to be ad-invariant.

Moreover, if the Lie bracket in g is given by the commutator, [a, b] = ab − ba, then the
ad-invariance follows from the associativity of the multiplication in g.

9
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Proof. The first part of the lemma is immediate, as

([a, c], b)g + (c, [a, b])g = Tr([a, c]b + c[a, b]) = Tr[a, cb] = 0,

where we used the assumptions from the proposition. The second statement of the lemma
follows immediately from the assumption and (28). �

Under the assumption that we have an algebra g such that a Lie bracket is a derivation of
a multiplication (4) and g is endowed with a trace form inducing a nondegenerate ad-invariant
scalar product (27), the most natural Casimir functions Cn(L) ∈ C∞(g) of the Lie–Poisson
bracket (19) are given by the traces of powers of L, i.e.,

Cn(L) = 1

n + 1
Tr(Ln+1) ⇐⇒ dCn = Ln n �= −1. (29)

The associated differentials are found from expression (15), which can be now reduced to
d

dt
F (L) = (Lt , dF)g = Tr(Lt dF) L ∈ g, (30)

where t is an evolution parameter associated with a vector field Lt on g.

2.6. Hamiltonian structures on Poisson algebras

Definition 2.9. Let A be a commutative, associative algebra with unit 1. If there is a Lie
bracket on A such that for each element a ∈ A the operator ada : b 	→ {a, b} is a derivation of
the multiplication, i.e. {a, bc} = {a, b}c + b{a, c}, then (A, {·, ·}) is called a Poisson algebra
and the bracket {·, ·} is a Poisson bracket.

Thus, the Poisson algebras are Lie algebras with the Lie bracket [·, ·] := {·, ·} endowed with
an additional structure. Of course, we should not confuse the above bracket with the Poisson
brackets in the algebra of scalar fields. It will follow easily from the context which bracket is
used. In the case of the Poisson algebra A a classical R-matrix defines the second Lie product
on A but not the Poisson bracket; in general, this would not be possible.

Theorem 2.10 [55]. Let A be a Poisson algebra with the Poisson bracket {·, ·} and a non-
degenerate ad-invariant scalar product (·, ·)A such that the operation of multiplication is
symmetric with respect to the latter, i.e., (ab, c)A = (a, bc)A for all a, b, c ∈ A. Assume that
R is a classical R-matrix such that (10) holds.

Then for any integer n � 0 the formula

{H,F }n = (L, {R(Ln dF), dH } + {dF,R(Ln dH)})A, (31)

where H,F are smooth functions on A, defines a Poisson structure on A. Moreover, all
brackets {·, ·}n are compatible.

For the proof we send reader to the original publication [55].
An important property that classical R-matrices commute with differentials of smooth

maps from A to A, or equivalently satisfy (10), is used in the proof of theorem 4.2 of
[55], although it is not explicitly stated there. In fact, the existence of scalar product being
symmetric with respect to the multiplication, (ab, c) = (a, bc), entails existence of a trace
form on A. Setting c = 1 we have (ab, 1) = (a, b). Thus, the trace can be defined as
Tr(a) := (a, 1) = (1, a).

The Poisson operators πn related to the Poisson brackets (31) such that {H,F }n =
(dF, πn dH), are given by the following Poisson maps:

πn : dH 	→ {R(Ln dH),L} + LnR∗({dH,L}) n � 0. (32)

10
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Note that the bracket (31) with n = 0 is just the Lie–Poisson bracket with respect to the
second Lie bracket on A defined by a classical R-matrix. Referring to the dependence on L,
the Poisson maps (32) are called linear for n = 0, quadratic for n = 1 and cubic for n = 2,
respectively. The Casimir functions C(L) of the natural Lie–Poisson bracket are in involution
with respect to all Poisson brackets (32) and generate pairwise commuting Hamiltonian vector
fields of the form

Lt = πn dC = {R(Ln dC),L} L ∈ A.

Taking the most natural Casimir functions (29), defined by traces of powers of L, for the
Hamiltonians, one finds a hierarchy of evolution equations which are multi-Hamiltonian
dynamical systems:

Ltn = {R dCn,L} = π0 dCn = π1 dCn−1 = · · · = πl dCn−l = · · · , (33)

where Cn are such that dCn = L dCn−1. For any R-matrix any two evolution equations in the
hierarchy (33) commute because of involutivity of the Casimir functions Cn. Each equation
admits all the Casimir functions as conserved quantities in involution. In this sense, we will
consider (33) as a hierarchy of integrable evolution equations. The most natural choice for the
Casimir functions is the traces of the power functions (29).

2.7. Hamiltonian structures on noncommutative algebras

In this section, in contrast with the previous one, we will consider a noncommutative
associative algebra g, with unity, for which the Lie structure is defined as a commutator,
i.e., [a, b] := ab − ba, where a, b ∈ g. Such a Lie bracket automatically satisfies the required
Leibniz rule (4). We further assume existence of nondegenerate, symmetric and ad-invariant
scalar product on g. Let R be a classical R-matrix such that (10) is satisfied.

In this case, the situation is more involved and only three explicit forms of Poisson brackets
on the space of smooth functions C∞(g) defined by related Poisson tensors are known from
the literature:

{H,F }n = (dF, πn dH)g n = 0, 1, 2.

These Poisson brackets (or associated tensors) are called linear, quadratic and cubic brackets
(resp. tensors) for n = 0, 1, 2, respectively.

The linear one is simply the Lie–Poisson bracket, with respect to the second Lie structure
on g defined by classical R-matrix, with the Poisson tensor (25)

π0 dH = [R dH,L] + R∗[dH,L], (34)

for which there is no need for additional assumptions.
In our further considerations we have to assume that the scalar product is symmetric with

respect to the operation of multiplication, (ab, c) = (a, bc). Note that this property implies
that the scalar product is automatically ad-invariant with respect to the Lie bracket defined by
the commutator (see lemma 2.8).

The quadratic case is more delicate. A quadratic tensor [91]

π1 dH = A1(L dH)L − LA2(dHL) + S(dHL)L − LS∗(L dH) (35)

defines a Poisson tensor if the linear maps A1,2 : g → g are skew-symmetric, A∗
1,2 = −A1,2,

satisfies YB(α) (3) for α �= 0 and the linear map S : g → g with its adjoint S∗ satisfies

S([A2a, b] + [a,A2b]) = [Sa, Sb], S∗([A1a, b] + [a,A1b]) = [S∗a, S∗b]. (36)

In the special case when

R̃ := 1
2 (R − R∗) (37)

11
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satisfies YB(α), for the same α as R, under the substitution A1 = A2 = R − R∗ and
S = S∗ = R + R∗ the quadratic Poisson operator (35) reduces to [56, 66]

π1 dH = [R[dH,L]+, L] + LR∗[dH,L] + R∗([dH,L])L, (38)

where [a, b]+ := ab + ba and conditions (36) are equivalent to YB(α) for R and R̃. In
particular, when R∗ = −R, these conditions are automatically satisfied as in this case R̃ = R.

Another special case occurs when the maps A1,2 and S originate from the decomposition
of a given classical R-matrix satisfying YB(α) for α �= 0

R = 1
2 (A1 + S) = 1

2 (A2 + S∗),

where A1,2 are skew-symmetric. Then, conditions (36) imply that both A1 and A2 satisfy
YB(α) for the same value of α as R [64]. Hence, in this case we only have to check conditions
(36) for (35) to be a Poisson operator. The latter now takes the form

π1 : dH 	→ 2R(L dH)L − 2LR(dHL) + S([dH,L])L + LS∗[dH,L]. (39)

Finally, the cubic tensor π2 takes the simple form [66]

π2 : dH 	→ [R(L dHL),L] + LR∗([dH,L])L

and is Poisson without any further additional assumptions.
Once again, taking the Casimir functions (29) defined by the traces of powers of L for the

Hamiltonians yields a hierarchy of evolution equations which are tri-Hamiltonian dynamical
systems,

Ltn = [R dCn,L] = π0 dCn = π1 dCn−1 = π2 dCn−2, (40)

where Cn are such that dCn = L dCn−1. We assumed that π2 in (40) is given by (38) or (39).
In the first case all three Poisson tensors in (40) are automatically compatible. In the second
case, this has to be checked separately.

2.8. Central extension approach

Let g be a Lie algebra with the Lie bracket [·, ·]. Consider its extension ĝ := g ⊕ K with the
Lie bracket given by

[(a, α), (b, β)] ≡ âd(a,α)(b, β) := ([a, b], ω(a, b)) a, b ∈ g α, β ∈ K, (41)

where âd is the associated adjoint action. It is readily seen that (41) is a well-defined Lie
bracket if and only if ω is a 2-cocycle.

Definition 2.11. A 2-cocycle on g is a bilinear map ω : g × g → K such that

(i) it is skew-symmetric: ω(a, b) = −ω(b, a),
(ii) and it satisfies the cyclic condition:

ω([a, b], c) + ω([c, a], b) + ω([b, c], a) = 0, (42)

where a, b, c ∈ g.

Note that (0, α) ∈ ĝ commute with respect to (41) with all other elements from ĝ and
hence g can be identified with g ⊕ α for fixed α ∈ K. The value α is often called a charge. In
fact g ∼= ĝ/c, where c = {(0, α) ∈ ĝ : α ∈ K} is in the center of ĝ, and thus the Lie algebra ĝ

is called a central extension of g.
Assume now (for simplicity) that g can be identified with g∗ through a non-degenerate

symmetric scalar product (23). Then this product can be extended to the algebra ĝ in the
following fashion:

((a, α), (b, β))ĝ := (a, b)g + αβ a, b ∈ g α, β ∈ K. (43)
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Of course, (43) is symmetric and an important fact is that it preserves non-degeneracy. Thus,
ĝ∗ can be identified with ĝ.

Usually 2-cocycles are defined through the scalar product on g and a linear map φ : g → g

such that

ω(a, b) = (a, φ(b))g. (44)

If the linear map φ : g → g is skew-symmetric, i.e., φ∗ = −φ, and the following condition

φ([a, b]) = ad∗
aφ(b) − ad∗

bφ(a) (45)

is satisfied, then it is called a 1-cocycle.

Proposition 2.12. The bilinear form given by (44) is a 2-cocycle if and only if φ is a 1-cocycle.
Moreover, if the symmetric product on g is ad-invariant (24) then (44) is a 2-cocycle if and
only if the skew-symmetric φ is a derivation of the Lie bracket [·, ·] in g, i.e.,

φ([a, b]) = [φ(a), b] + [a, φ(b)] (46)

holds.

Proof. It is clear that (44) is skew-symmetric if and only if φ∗ = −φ. The cyclic condition
(42) for skew-symmetric φ has the form

ω([a, b], c) + c.p. = −(φ([a, b]), c)g + ([b, c], φ(a))g + ([c, a], φ(b))g

= −(φ([a, b]), c)g − (ad∗
bφ(a), c)g + (ad∗

aφ(b), c)g = 0,

where we used definition (14) of coadjoint action. Now, since the symmetric product on g

is non-degenerate, the cyclic condition is equivalent to (45). For the ad-invariant symmetric
product (46) follows from (45) since ad∗ is in this case identified with ad. �

The adjoint action (41) does not depend on α, thus in fact it defines adjoint action of g

on ĝ. Hence, we can omit dependence on the charge and write âda ≡ âd(a,α). When a given
2-cocycle is defined by means of a 1-cocycle, i.e., (44) holds, then we can write explicitly the
coadjoint action âd

∗
, since

(âd
∗
b(a, α), (c, γ ))ĝ := −((a, α), âdb(c, γ ))ĝ = −(a, adbc)g − α(b, φ(c))g

= (ad∗
ba + αφ(b), c)g = ((ad∗

ba + αφ(b), 0), (c, γ ))ĝ.

Hence, we can restrict âd
∗

to g and define the central extension of coadjoint action of g∗ on g,
i.e.

âd
∗
b(·) := ad∗

b(·) + αφ(b)

for every b ∈ g, where the charge α ∈ K is now treated as a parameter.
According to theorem 2.5 the Lie bracket (41) on ĝ defines a Lie–Poisson bracket on the

space of smooth functions on ĝ∗ ∼= ĝ, i.e., on C∞(̂g). This Poisson bracket can be restricted to
C∞(g) considered as a subspace of C∞(̂g). Hence, at a point (L, α) ∈ ĝ we have

{H,F }(L) := ((L, α), [(dF, 0), (dH, 0)])ĝ = (L, [dF, dH ])g + αω(dF, dH), (47)

where H,F ∈ C∞(g) and α ∈ K. The Poisson bracket (47) is a central extension of the natural
Lie–Poisson bracket on C∞(g) generated by the Lie algebra structure on g. When the 2-cocycle
is given by (44), then the associated Poisson tensor π such that {H,F } = (dF, π dH)g has
the form π dH = âd

∗
dHL ≡ ad∗

dH L + αφ(dH).
The second Lie bracket on ĝ = g ⊕ K, being an extension of (1), is defined by

[(a, α), (b, β)]R := ([a, b]R, ωR(a, b)) a, b ∈ g α, β ∈ K, (48)

13
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where

ωR(a, b) = ω(Ra, b) + ω(a,Rb), (49)

and ω is a 2-cocycle from (41). Clearly, (48) is a well-defined Lie bracket on ĝ if and only
if R : g → g is a classical R-matrix and (49) is a 2-cocycle with respect to the second Lie
bracket on g (1) induced by R.

Proposition 2.13. A sufficient condition on R for (49) to be a 2-cocycle with respect to (1) is
the Yang–Baxter equation (3).

Proof. Skew-symmetry of (49) is obvious. Hence, it suffices to verify the cyclic condition for
the 2-cocycles. Thus, from the Yang–Baxter equation (3) we have that

ωR([a, b]R, c) + c.p. = ω(R[a, b]R, c) + ω([a, b]R,Rc) + c.p.

= ω([Ra,Rb], c) + αω([a, b], c) + ω([Ra, b], Rc) + ω([a,Rb], Rc) + c.p.

= ω([Ra,Rb], c) + ω([Rb, c], Ra) + ω([c, Ra], Rb) + c.p. = 0,

where the last two equalities hold because ω is a 2-cocycle. �

Hence, the second Lie–Poisson bracket on C∞(g) at a point (L, α) ∈ ĝ has the form

{H,F }R(L) := ((L, α), [(dF, 0), (dH, 0)]R)ĝ

= (L, [dF, dH ]R)g + αωR(dF, dH), (50)

where H,F ∈ C∞(g) and α ∈ K. When a 2-cocycle is given by (44), then the associated
Poisson tensor πR such that {H,F }R = (dF, πR dH)g has the form

πR dH = âd
∗
R dHL + R∗âd

∗
dHL ≡ ad∗

R dHL + R∗ad∗
dHL + αφ(R dH) + αR∗φ(dH). (51)

Note that the higher order Poisson tensors from sections 2.6 and 2.7 do not survive
the procedure of central extension. We have the following straightforward extension of
theorem 2.7.

Theorem 2.14. The Casimir functionals Cn of (47), i.e., Cn ∈ C∞(g) such that

π dCn = ad∗
dCn

L + αφ(dCn) = 0, (52)

are in involution with respect to (50) and hence generate the following hierarchy of mutually
commuting Hamiltonian evolution equations on g:

Ltn = πR dCn = ad∗
R dCn

L + αφ(R dCn). (53)

Let us consider an important special case of (44), when φ is a derivation with respect
to additional continuous space coordinate. Let g be a Lie algebra g with a non-degenerate
symmetric ad-invariant scalar product (27) defined by means of a trace form tr on g. Assume
now that g depends in a nontrivial fashion on an additional continuous parameter y ∈ S

1,
which naturally generates the corresponding current operator algebra

g̃ = C∞(S1, g) (54)

of smooth maps from S
1 to g. On the current algebra g̃ we define the following modified trace

form Tr : g̃ → K, such that Tr(a) := ∫
S1 tr(a) dy, where a ∈ g̃. Then the scalar product reads

(a, b)g̃ := Tr(ab) =
∫

S1
tr(ab) dy a, b ∈ g̃. (55)
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Thus, assuming that the derivative with respect to y is a derivation of the Lie bracket in g̃, i.e.,
(46) with φ = ∂y holds, we can define the so-called Maurer–Cartan 2-cocycle

ω(a, b) = (a, ∂yb)g̃ ≡
∫

S1
tr(a∂yb) dy a, b ∈ g̃. (56)

In this case, the Casimir functions of the natural Lie–Poisson bracket on the centrally
extended Lie algebra satisfy (52) in the form of the so-called Novikov–Lax equation

[dCn,L] + α∂y(dCn) = 0. (57)

This follows from the invariance of the scalar product, as in this case ad∗ ∼= ad. The
differentials of Casimirs dCn generate the following Lax hierarchy (53):

Ltn = [R dCn,L] + α∂y(R dCn) = πR dCn, (58)

where the Poisson tensor (51) takes the form

πR dH = [R dH,L] + R∗[dH,L] + α∂y(R dH) + αR∗∂y(dH). (59)

2.9. Dirac reduction and homotopy formula

It often happens that we need to restrict the dynamics under study to a submanifold defined
via some constraints. In such a case, a question arises of whether and how one can reduce the
Poisson tensors.

Assume that the (linear) phase space U = U1 ⊕ U2 is spanned by u1 ∈ U1 and u2 ∈ U2,
i.e. u = (u1, u2)

T. We will only consider the simplest case of the Dirac reduction given by
the constraint u2 = c, where c ∈ U2 is an arbitrary constant. In many cases considering
such constraint is sufficient. Besides, more complicated constraints can always be reduced by
change of dependent variables to several constraints of the above type.

The Hamiltonian system with the Poisson tensor before reduction has the form(
u1

u2

)
t

=
(

π11(u1, u2) π12(u1, u2)

π21(u1, u2) π22(u1, u2)

) (
δH
δu1

δH
δu2

)
,

where we assume that π22 is nondegenerate and hence invertible. Taking the constraint u2 = c
into consideration we find that

0 = (u2)t |u2=c = π21(u1, c)
δH

δu1
+ π22(u1, c)

δH

δu2
.

Thus, we can express δH
δu2

in the terms of δH
δu1

and put it into

(u1)t = π21(u1, c)
δH

δu1
+ π22(u1, c)

δH

δu2
=: π red(u1)

δH

δu1
.

Hence the reduced tensor takes the form

π red(u1) = π11(u1, c) − π12(u1, c) · [π22(u1, c)]−1 · π21(u1, c). (60)

Lemma 2.15 [24]. The operator (60) is a Poisson operator on the affine space U1 ⊕ c.

The skew-symmetry of (60) is obvious. However, the proof of the Jacobi identity for
(60) consists of tedious yet rather straightforward calculations [24] and we will omit it. In the
finite-dimensional case, the said proof is much simpler (see for example [60]).

Note that if the inner product is not ad-invariant or we use the central extension procedure,
then in general we do not know the explicit form of the Casimir functions (like (29) for example)
for the natural Lie–Poisson bracket (or the extension thereof). In such a case one has to look
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for the annihilators dC of the Lie–Poisson tensor by directly solving the equation π dC = 0.
With dC in hand, one can try to reconstruct the Casimir functions C. The Poincaré lemma says
that if the phase space U is linear or of star shape (∀u ∈ U {εu : 0 � ε � 1} ⊂ U), then each
closed k-form is exact. In particular, when U satisfies the condition of the Poincaré lemma,
we can reconstruct the Casimir functions C ∈ C∞(g∗) from their differentials dC ∈ g using
the homotopy formula [68]

C(η) =
∫ 1

0
〈dC(εη), η〉 dε η ∈ g∗. (61)

Nevertheless, even when (61) is not applicable, the functions C can often be reconstructed
through explicit integrations.

2.10. Lax hierarchies from loop algebras

Let g be a Lie algebra over K with the Lie bracket [·, ·]. In contrast with section 2.2, we do
not assume here any additional structures on g.

Definition 2.16. The loop algebra over g is the algebra gλ := g[[λ, λ−1]] of formal Laurent
series in the parameter λ ∈ K with the coefficients from g.

It is easily seen that thanks to the bilinearity the operation in the former algebra extends
to the loop algebra. Thus, in our case we can readily extend the Lie bracket [·, ·] to the loop
algebra gλ by setting

[aλm, bλn] = [a, b]λm+n a, b ∈ g m, n ∈ Z. (62)

There are two natural decompositions of gλ into the sum of Lie subalgebras, i.e.

gλ = gλ
+ ⊕ gλ

− =
⎛⎝∑

i�k

uiλ
i

⎞⎠ ⊕
(∑

i<k

uiλ
i

)
(63)

for k = 0 and 1. Thus for k = 0 and k = 1 we have well-defined classical R-matrices (12)

R = P+ − 1
2 . (64)

The transformation λ 	→ λ−1 maps the case of k = 0 into that of k = 1, and vice versa. For
this reason in what follows we restrict ourselves to considering the case of k = 0 only, and
hence P+ and P− will stand for projections onto nonnegative and negative powers of λ. In
fact, we have an infinite family of classical R-matrices

Rn = Rλn n ∈ Z (65)

and the corresponding new Lie brackets on g read

[a, b]Rn
:= [Rna, b] + [a,Rnb], a, b ∈ g. (66)

The R-matrices (65) are well defined since λn is an intertwining operator and proposition 2.3
holds.

Let L be an element of g. We have the following Lax hierarchy:

Ltn = [(λnL)+, L] = −[(λnL)−, L] n ∈ Z. (67)

The commutativity of the flows (67) for different n follows from the fact that (64) satisfies
the Yang–Baxter equation (3) and Xn(L) = λnL are invariants (5) such that (Xm(L))tn =
[RXm(L),Xn(L)] still holds. Thus, the details of computations are parallel to those from the
proof of proposition 2.4.
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Without concentrating on the specific properties of g, we can investigate the general form
of appropriate Lax operators from gλ, i.e., the operators L ∈ gλ that generate self-consistent
evolution equations on gλ from the Lax equations (67). This means that the maximal and
minimal orders in λ of right- and left-hand sides of (67) have to coincide. Consider a bounded
Lax operator L ∈ gλ of the form

L = uNλN + uN−1λ
N−1 + · · · + u1−mλ1−m + u−mλ−m N,m ∈ Z, (68)

where N � −m and ui ∈ g. Then a straightforward analysis shows that (68) yields consistent
equations (67) if uN is a nonzero time-independent element of g, i.e., (uN)tn = 0. The specific
properties of g might lead to further restrictions on (68).

Theorem 2.7 can be applied for the construction of Hamiltonian hierarchies on the dual
algebra to gλ. We understand the dual algebra as g∗λ = g∗[[λ, λ−1]]. However, in contrast with
the previously considered algebras, in the case of a loop algebra we have an infinite family of
R-matrices (65) with respective Lie–Poisson brackets (21) and related Poisson tensors of the
form πRn

dH = ad∗
Rn dH η + R∗

nad∗
dH η, where η ∈ g∗λ and dH ∈ gλ.

The coadjoint action ad∗ is defined with respect to the Lie bracket (62) on gλ. All the above
Lie–Poisson brackets are mutually compatible, which follows from the fact that the sum of
intertwining operators also is an intertwining operator. Besides, if Cn ∈ C∞(g∗λ) is a Casimir
function of the natural Lie–Poisson bracket (19), i.e. ad∗

dCn
η = 0, then λlCn is also a Casimir

function. Hence, in the loop algebra case the Casimir functions generate multi-Hamiltonian
hierarchies of mutually commuting vector fields on g∗λ

ηtn = ad∗
RdCn

η = · · · = πR−1 dCn+1 = πR dCn = πR1 dCn−1 = · · · ,
where dCn+l = λl dCn for l ∈ Z.

If we have a trace form on g, given by a linear map tr : g → K such that the form in
question is non-degenerate and symmetric, then this form can be extended to the loop algebra
gλ by the formula

Tr(a) = tr(res a) a ∈ gλ, (69)

where res
∑

i aiλ
i = a−1. In fact, the choice of residue in (69) is a matter of convention, and

one can choose the coefficient of an arbitrary order to get a proper definition of a trace. This
is in contrast with the trace form (79) in the case of Poisson algebras. Nondegeneracy and
symmetry of (69) are preserved. Moreover, if tr defines an ad-invariant metric on g, then this
is also true for (69), and one can make an identification ad∗ ≡ ad.

Consider now the central extension approach for the loop algebras. Assume for simplicity
that on g, and therefore on gλ, we have a nondegenerate inner product, and hence g∗λ ∼= gλ.
Let ĝλ be an extension of gλ with the Lie bracket (41) defined by a 2-cocycle ω. The extended
natural Lie–Poisson bracket has the form

{H,F }(L) := (L, [dF, dH ])gλ + αω(dF, dH). (70)

In contrast with the previous case, we have here an infinite family of R-matrices (65) inducing
an associated infinite family of new Lie–Poisson brackets on C∞(gλ),

{H,F }n(L) := (L, [dF, dH ]Rn
)g + αωRn

(dF, dH), (71)

where

ωRn
(a, b) := ω(Rna, b) + ω(a,Rnb) a, b ∈ gλ. (72)

All quantities (72) are 2-cocycles of the respective Lie brackets (66). For n = 0 according to
proposition 2.13 this follows from the fact that R satisfies the classical Yang–Baxter equation,
in the remaining cases one must additionally use the fact that λn are intertwining operators.
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It is important to stress that all Poisson brackets (71) are pairwise compatible, which follows
from the fact that the linear sum of intertwining operators is an intertwining operator. If the
2-cocycle ω is given in the form (44), then the Casimirs of the extended natural Lie–Poisson
bracket (70) satisfy

π dCn = ad∗
dCn

L + αφ(dCn) = 0, (73)

and generate multi-Hamiltonian Lax hierarchy

Ltn = ad∗
R dCn

L + αφ(R dCn) = · · · = πR−1 dCn+1 = πR dCn = πR1 dCn−1 = · · · , (74)

where L ∈ gλ, with the restriction that dCn+l = λn dCn for l ∈ Z. The respective Poisson
tensors associated with the brackets (71) are given by

πRl
dH = ad∗

Rl dH L + R∗
l ad∗

dH L + αφ(Rl dH) + αR∗
l φ(dH). (75)

We readily see that R�
l = −λlR. To find dCn, we can assume that

dCn ≡ λn dC0 = a0 + a1λ
1 + a2λ

−2 + · · · n ∈ Z,

and solve (73) recursively for the coefficients ai . Then the functions Cn in principle can be
reconstructed using the homotopy formula (61).

Consider now a particular case of the Maurer–Cartan 2-cocycle (44), with φ = ∂x and the
loop algebra g̃λ over (54). Assuming that ad∗ ≡ ad, the Lax hierarchy (74) takes the form

Ltn = [(dCn)+, L] + α∂x(dCn)+ = · · · = πRl
dCn−l = · · · . (76)

Then, analyzing (76) we find that L ∈ g̃λ of the form (68) yields self-consistent equations for
α �= 0 if N � −1 and uN is nonzero and time-independent (except for N = −1) and m � 0.
The Hamiltonian structures for (76) are given by the Poisson tensors (75) taking the form

πRl
dH = [(λl dH)+, L] − λl[dH,L]+ + α∂x(λ

l dH)+ − αλl∂x(dH)+. (77)

The Poisson tensors (77) form a proper subspace of g̃λ with respect to (68), with the above
restrictions, if N � l � −m for N � 0 and if 0 � l � −m for N = −1. Thus, there
always exist at least two Poisson tensors πRl

for which the procedure of Dirac reduction is not
required. Recall that this analysis disregards specific properties of the Lie algebra g. Thus, if
L is further constrained according to these specific properties of g the Dirac reduction might
be yet required.

Finally, let us note that in contrast with the previously considered algebras, where the
central extension has lead to (2+1)-dimensional systems, in the case of loop algebras the
central extension is necessary for the construction of (1+1)-dimensional integrable continuous
field systems. The reader will find the examples of this construction in the following sections.

A natural choice is loop algebras defined over finite-dimensional semi-simple Lie algebras.
In such a case the Killing form gives us symmetric, nondegenerate and also ad-invariant
inner product. Thus, taking into consideration the central extension procedure with the
Maurer–Cartan 2-cocycle, the above choice leads to the constructions of a wide class
of (1+1)-dimensional integrable continuous systems. The simplest case is presented in
section 4.3.

3. Integrable dispersionless systems

The theory of integrable dispersionless or equivalently integrable hydrodynamic-type systems,
i.e., the quasi-linear systems of first-order partial differential equations, belongs to the most
recent ones and has been systematically developed from the 1980s. Significant progress was
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achieved after Tsarev [100] discovered a technique called the generalized hodograph method
that permits us to find solutions using quadratures, see also [34].

The study of the Poisson structures of dispersionless systems was initiated by Dubrovin
and Novikov [29]. They established a remarkable result that the Poisson tensors of
hydrodynamic type can be generated by contravariant nondegenerate flat Riemannian metrics.
The natural geometric setting for the associated bi-Hamiltonian structures (Poisson pencils)
is the theory of Frobenius manifolds based on the geometry of pencils of contravariant
Riemannian metrics [28]. The Frobenius manifolds were introduced by Dubrovin as a
coordinate-free form of the associativity equations, appearing in the context of deformations
of two-dimensional topological field theories (TFT), the so-called WDVV equations, that can
be identified with (a class of) hydrodynamic-type systems.

3.1. Poisson algebras of Laurent series

Consider the algebra of ‘formal’ Laurent series in p ∈ C
∗ about ∞,

A = A�k−r ⊕ A<k−r :=
{

N∑
i=k−r

ai(x)pi

}
⊕

{ ∑
i<k−r

ai(x)pi

}
,

where ui are smooth functions of continuous variable x ∈ �, i.e., A consists of polynomial
functions in p and p−1 with finite highest orders, where � = S

1 if we assume these functions
to be periodic in x or � = R if these functions belong to the Schwartz space (ui and all their
derivatives tend rapidly to zero when x approaches ±∞). We can introduce the Lie algebra
structure on A in infinitely many ways using a family of Poisson brackets

{f, g}r := pr

(
∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p

)
r ∈ Z f, g ∈ A (78)

that generalize the well-known canonical Poisson bracket (the case r = 0).
The trace form in the algebra A with fixed Poisson bracket (78) for some r is defined in

the following fashion:

Tr f := −
∫

�

res∞(p−rf ) dx f ∈ A. (79)

Here res is the standard residue at p = ∞ such that res∞L = −u−1 for L = ∑
i uip

i .

Proposition 3.1. The scalar product (27) defined by means of the trace form (79) is symmetric,
nondegenerate and ad-invariant.

Proof. The nondegeneracy and symmetry are obvious. Let γ be a closed curve encircling
once an infinity point on the extended complex plane. Then

Tr{f, g}r = −
∫

�

res∞(∂pf ∂xg) dx +
∫

�

res∞(∂xf ∂pg) dx

= − 1

2π i

∫
�

∮
γλ

(∂p∂xg) dp dx +
1

2π i

∫
�

∮
γλ

(∂xf ∂pg) dp dx = 0,

where the latter equality follows from integrations by parts with respect to p and x. Hence, the
ad-invariance is a consequence of lemma (2.8). �

Obviously, (78) is a derivation for the multiplication in A and hence we can further apply
the scheme from section 2.5. Fixing r we fix Poisson algebra and we are able to construct
R-matrices following from the decomposition of A. Simple inspection shows that A�k−r and
A<k−r are Lie subalgebras of A only in the following cases:
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• if r = 0 for k = 0;
• if r ∈ Z for k = 1, 2;
• if r = 2 for k = 3.

Thus, fixing r we fix the Lie algebra structure with k numbering the R-matrices given in the
form R = P�k−r − 1

2 . Hence, we have multi-Hamiltonian Lax hierarchies (33) of the form

Ltn = {
(L

n
N )�k−r , L

}
r
= π0 dHn = π1 dHn−1 n = 1, 2, . . . , (80)

generated by fractional powers of infinite-field Lax functions L ∈ A given in the form

L = uNpN + uN−1p
N−1 + uN−2p

N−2 + · · · N �= 0, (81)

where uN = 1, uN−1 = 0 for k = 0 and uN = 1 for k = 1. A simple analysis of (80) shows
that (81) are appropriate Lax functions except for the case k = 3, which is excluded from
further considerations. This means that all the Lax functions under study have pole or root at
infinity.

We find that R∗ = 1
2 − P�2r−k . The differentials of a given functional H ∈ C∞(A) of

(81) have the form dH = ∑N+k−2
i=−∞

δH
δui

pr−1−i , such that (16) holds. Hence, the related Poisson
tensors for (80) are given by (32)

πq dH = {(Lq dH)�k−r , L}r − Lq({dH,L}r )�2r−k, (82)

where q = 0, 1, . . . , with the following Hamiltonians (29)

Hn = − N

n + N
Tr

(
L

n
N

+1
)

n �= −N. (83)

We still have to check whether the above Lax functions span proper subspaces, with
respect to the above Poisson operators (82), of the full Poisson algebras. We will restrict our
considerations to linear (n = 0) and quadratic (n = 1) Poisson tensors, as they are obvious
enough to define bi-Hamiltonian structures. Besides, in all nontrivial cases, the Lax functions
do not span proper subspaces w.r.t. the Poisson tensors for n � 2.

For k = 0 the above Lax functions always span the proper subspace w.r.t. the linear
Poisson tensor, but for k = 1, 2 this is the case only if N � 2r − 2k + 1, otherwise the
Dirac reduction is required. For the quadratic Poisson tensors the Dirac reduction is always
necessary. The reduced quadratic Poisson tensor for k = r = 0, 1, 2 is given by [95]

π red
1 dH = {(L dH)�0, L}r − L({dH,L}r )�r +

1

N

{
L, ∂−1

x res∞{dH,L}0
}

r
, (84)

see section 2.9 and lemma (2.15). The reduced Poisson tensors (84) are always local as the
residue from the last term is always a total derivative.

The dispersionless systems with the Lax representations of the form (80) where r = 0
with k = 0, 1 (the canonical Poisson bracket) related to the dispersionless KP hierarchy and
the dispersionless modified KP hierarchy and the case k = r = 1 of the dispersionless Toda
hierarchy, together with their finite-field reductions, were considered in many papers (see for
example [5, 17, 32, 48, 51, 54, 89, 99, 102] and more recently [19, 20, 71]). The theory with
the Poisson bracket (78) for arbitrary integer r, from the point of view of classical R-matrices,
was considered for the first time in [9] and further developed in [13, 95].

The decomposition of the algebra A into Lie subalgebras is preserved under the
transformation p 	→ p−1 (the case k, r goes to k′ = 3 − k, r ′ = 2 − r), but the Laurent series
at ∞ (81) transform into Laurent series at zero. This fact suggests a more analytic approach
to the construction of dispersionless systems, see [42, 52]. For the theory of meromorphic
Lax representations (80) of dispersionless systems see [95]. In [52] Krichever introduced the
so-called universal Whitham hierarchies by means of the moduli spaces of Riemann surfaces
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of all genera. Other classes of reductions yielding nonstandard integrable dispersionless
systems can be found for instance in [41, 73, 101]. For a more detailed discussion of the
Lax representations (80) for noncanonical Poisson brackets, their reductions and Hamiltonian
structures as well as several examples of finite-dimensional reductions see [13, 95].

We know that the quantization of Poisson algebras for r = 0 (and for the equivalent case
r = 2) gives the algebra of pseudo-differential operators and leads to the construction of field
soliton systems, while the quantization of the case for r = 1 gives the algebra of shift operators
and leads to the lattice soliton systems. However, the class of reductions yielding construction
of dispersionless systems is much wider then the class of corresponding reductions yielding
systems with dispersion. Besides, the issue of quantization of Poisson algebras for r �= 0, 1, 2
that would lead to the construction of dispersive integrable systems is still open, see [15, 21,
90, 96] and references therein.

Below we present two examples of hydrodynamic chains (infinite-field systems) with
their bi-Hamiltonian structures. For the classifications of hydrodynamic chains and related
hydrodynamic Poisson tensors see [70–72].

Example 3.2. Let us consider the infinite-field Lax function (81) for N = 1: L =
p +

∑
i�0 uip

−i−1. Then we find the first nontrivial hydrodynamic chain from hierarchy
(80), the well-known Benney moment chain,

Lt2 = 1
2 {(L2)�0, L}0 = π0 dH2 = π1 dH1 ⇐⇒ (ui)t2 = (ui+1)x + iui−1(u0)x,

where (L2)�0 = p2 + 2u0. The bi-Hamiltonian structure is given by the Poisson tensors

π
ij

0 = j∂xui+j−1 + iui+j−1∂x

π
ij

1 = (i + 1)ui+j ∂x + (j + 1)∂xui+j + (i + 1)jui−1∂xuj−1

+
j−1∑
k=0

[(i − j + k)ui−1+k∂xuj−1−k + kuj−1−k∂xui−1+k],

which are obtained from (82) for q = 0 and (84). The respective Hamiltonians are (83)

H1 = 1

2

∫
�

u1 dx H2 = 1

2

∫
�

(
u2

0 + u2
)

dx.

Example 3.3. The case of k = r = 1 with the Lax function (81) for N = 1 of the form
L = p +

∑∞
i=0 uip

−i . The first hydrodynamic chain from (80) has the following form:

Lt1 = {(L)�0, L}1 = π0 dH1 = π1 dH0 ⇐⇒ (ui)t1 = (ui+1)x + iui(u0)x.

The bi-Hamiltonian structure is given by the Poisson tensors

π
ij

0 = j∂xui+j + iui+j ∂x

π
ij

1 =
i∑

k=0

[(j − k)uk∂xui+j−k + (i − k)ui+j−k∂xuk] + i(j + 1)ui∂xuj

+ (j + 1)∂xui+j+1 + (i + 1)ui+j+1∂x

as well as the Hamiltonians H0 = ∫
�

u0 dx and H1 = ∫
�

(
u1 + 1

2u2
0

)
dx.

The central extension approach from section 2.8 with the Mauren–Cartan 2-cocycle yields
the following Lax hierarchy (58) of (2+1)-dimensional hydrodynamic systems

Ltn = {(dCn)�k−r , L − αq}r = π0 dHn n = 1, 2, . . . , (85)
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where the Poisson bracket takes the form

{f, g}r := pr

(
∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂x

)
+

(
∂f

∂q

∂g

∂y
− ∂f

∂y

∂g

∂q

)
r ∈ Z f, g ∈ Ã.

The infinite-field Lax operators (81), with ui depending additionally on y ∈ S
1, are admissible

with respect to (85) if N � 1 − r . To construct evolution equations from (85), we take
dCn = ∑∞

i=0 an−ip
n−i and solve the Novikov–Lax equation (57), {dCn,L − αq}r = 0 for the

auxiliary fields ai in terms of the fields from Lax function. The linear Poisson tensor (51) is
given by

π0 dH = {(dH)�k−r , L − αq}r − ({dH,L − αq}r )�2r−k.

The Lax functions (81) span the proper subspace w.r.t. the above linear Poisson tensor if
N � 2r − 2k + 1, otherwise the Dirac reduction is required. The construction of (2+1)-
dimensional dispersionless systems by means of central extension procedure yielding the Lax
hierarchy was presented in [14], where one can also find a number of examples.

Example 3.4. The case of k = r = 0. Consider L = p2 + u. Then, for (dC3)�0 =
p3 + 3

2up + 3
4α∂−1

x uy we obtain the (2+1)-dimensional dKP equation

Lt3 = {(dC3)�0, L − αq}0 = π0 dH3 = π1 dH1 ⇐⇒ ut3 = 3
2uux + 3

4α2∂−1
x uy,

where the Poisson tensors are π0 = 2∂x and if α = 0 : π1 = ∂xu + u∂x . The Hamiltonians are

H1 =
∫∫

�×S1

1

4
u2 dx dy H3 =

∫∫
�×S1

1

16

(
2u3 + 3α2u∂−2

x uyy

)
dx dy.

Example 3.5. Consider the Lax operator L = p2−r +up1−r +vp−r for k = 1 and r ∈ Z, r �= 2.
Then for (dC2−r )�−r+1 = p2−r + up1−r we have

Lt2−r
= {(dC2−r )�1−r , L − αq}r = π0 dH2−r = π1 dH1−r

⇐⇒
(

u

v

)
t2−r

=
(

(2 − r)vx + αuy

ruxv + (1 − r)uvx

)
.

For r = 1 we get the (2+1)-dimensional dispersionless Toda equation with Hamiltonian
structure given by

π0 =
(

α∂y ∂xv

v∂x 0

)
and if α = 0, π1 =

(
∂xv + v∂x u∂xv

v∂xu 2v∂xv

)
,

with the Hamiltonians

H1 =
∫∫

�×S1

(
v +

1

2
u2

)
dx dy H0 =

∫∫
�×S1

u dx dy.

3.2. Universal hierarchy

Let g = Vect(S1) be the Lie algebra of (smooth) vector fields on the circle S
1 over the field

K. The elements of Vect(S1) can be identified with smooth functions a(x) of spatial variable
x ∈ S

1, with a Lie bracket in g of the form

〈a, b〉 := abx − bax, (86)

where a, b ∈ g. Note that (86) is a well-defined Lie bracket that does not satisfy the Leibniz
rule (4). Thus, we follow the scheme from section 2.10 and consider the loop algebra over
Vect(S1), i.e., gλ = Vect(S1)[[λ, λ−1]]. The commutator (86) readily extends to gλ. We already
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know that we have the decomposition of gλ into Lie subalgebras (63), with respective classical
R-matrices generating the following Lax hierarchies (67):

Ltn = 〈(λnL)�k, L〉 k = 0, 1, (87)

where L ∈ gλ and n ∈ Z.
The hierarchy (87) is the so-called universal hierarchy of hydrodynamic type, which has

been a subject of intensive research in recent years [61, 62]. The hierarchy (87) can be
obtained as a quasi-classical limit of the coupled KdV equations of Antonowicz and Fordy [4].
In this fashion we can obtain multi-Hamiltonian structure for the universal hierarchy [36]. In
fact, the multi-Hamiltonian structure of the coupled KdV equations using classical R-matrix
approach can be algebraically interpreted as a set of compatible Lie–Poisson structures on the
dual space to the loop Virasoro algebra [38]. The Virasoro algebra is a central extension of the
Lie algebra of vector fields on a circle Vect(S1) associated with the Gelfand–Fuchs 2-cocycle
(i.e. (44) with φ = ∂3

x ).

Example 3.6. Consider (87) for the infinite-field Lax functions given in the following
(appropriate) form L = u0 + u1λ

−1 + u2λ
−2 + · · ·, where u0 = 1 for k = 0. One can

observe that Ltn = 〈(λnL)�k, (λ
nL)<k〉λ−n. Hence, the evolution equations from (87) take

the form of (1+1)-dimensional hydrodynamic chains

(ui)tn = (1 − k)(ui)x +
i−1+k∑
j=1−k

〈ui−j , un+j 〉 k = 0, 1.

Assume that the dynamical fields in gλ depends on an additional spatial variable y. Let
us now consider a (2+1)-dimensional counterpart of (87). It reads

Ltn = 〈(An)�k, L〉 + ∂y(An)�k k = 0, 1, (88)

where An = anλ
n + an−1λ

n−1 + · · · satisfy

〈An,L〉 + (An)y = 0. (89)

Note that An = λnA0. For a given L ∈ gλ one finds coefficients ai from An by solving (89)
recursively. Note that one cannot obtain (88) as a central extension of the universal hierarchy,
as (56) is not a 2-cocycle associated with Vect(S1). Commutativity of the equations from the
hierarchy (88) can be proved by straightforward computation. On the other hand, integrability
of the equations from (88) follows from the fact that (88) is a Lax sub-hierarchy of the centrally
extended cotangent universal hierarchy considered in [85].

Example 3.7. Let L have the form L = λ + u in the case of k = 0. Then solving (89) one
finds that A0 = 1 + uλ−1 + ∂−1

x uyλ
−2 + · · ·. Hence, the first nontrivial (2+1)-dimensional

hydrodynamic equation from the hierarchy (88) is [62]

Lt2 = 〈(A2)�0, L〉 + ∂y(An)�0 ⇐⇒ ut2 = ∂−1
x uyy − uuy + ux∂

−1
x uy.

This hydrodynamic equation is equivalent to a system of the form

ut2 − vy + uvx − uxv = 0 vx − uy = 0,

that has recently attracted considerable attention, see [30, 35, 59, 69, 70, 85].

Example 3.8. The case of k = 1 for L = uλ−1. We have A0 = 1 − ∂−1
y uxλ

−1 + · · ·. Hence

Lt2 = 〈(A2)�1, L〉 + ∂y(An)�1 ⇐⇒ ut2 = u∂−1
y uxx − ux∂

−1
y ux.
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4. Integrable dispersive systems

In the following section, we apply the general formalism to several infinite-dimensional Lie
algebras in order to construct a vast family of integrable dispersive (continuous and discrete
soliton) systems.

Recently, the so-called integrable q-analogues of KP and Toda-like hierarchies have
become of increasing interest, see [3, 39, 45, 46, 98]. Our approach presented in two following
subsections includes the q-systems as a special case. Actually, we consider generalized
algebras of shift and pseudo-differential operators that allow us to construct in one scheme not
only ordinary lattice and field systems, but in particular also their q-deformations.

We also present (2+1)-dimensional extensions of the Lax hierarchies following from the
algebras of shift and pseudo-differential operators. In these cases, the quadratic Poisson tensor
is not preserved. Nevertheless, the second Poisson tensor can be given by means of the so-
called operand formalism [37, 57, 80]. Its construction, within classical R-matrix approach,
can be found in [16].

In the last subsection, we present the application of classical R-matrix formalism to the
loop algebra sl(2, C)[[λ, λ−1]], which is the simplest case of infinite-dimensional Lie algebras
of Kac–Moody. In fact the scheme of the construction of infinite-dimensional systems from
affine Kac-Moody Lie algebras is one of the most general and particular cases are closely
related to the algebras of shift and pseudo-differential operators yielding soliton systems
(see for instance [22, 33]). Note that since the affine Kac–Moody Lie algebras are central
extensions of loop algebras defined over finite-dimensional semi-simple Lie algebras, the
presented formalism in section 2.10 is sufficient for the application in this case. For details
we send the reader to the important review [27].

For the application of R-matrix formalism to other algebras see for example [75–77, 87].
A specially interesting class of algebras is related to the so-called super-symmetric (SUSY)
systems. The reader will find the details in [18, 44, 65, 74, 76] and in literature quoted there.

4.1. Algebra of shift operators

Consider the algebra of ‘formal’ shift operators

g = g�k−1 ⊕ g<k−1 =
⎧⎨⎩

N∑
i�k−1

ui E i

⎫⎬⎭ ⊕
{ ∑

i<k−1

ui E i

}
, (90)

where ui ∈ F , and F is an algebra of dynamical fields with values in K. The associative
multiplication rule in g (90) is defined by

Emu = Em(u)Em m ∈ Z. (91)

Proposition 4.1. The multiplication in (90) of the form (91) is associative if and only if
E : F → F is an invertible endomorphism (automorphism), i.e.

E(uv) = E(u)E(v).

The proof is straightforward. The Lie bracket in g is given by the commutator
[A,B] = AB − BA, where A,B ∈ g.

Let tr : g → K be a trace form, being a linear map, such that

tr(A) := 〈free(A)〉, (92)

24



J. Phys. A: Math. Theor. 42 (2009) 404002 M Błaszak and B M Szablikowski

where free(A) := a0 for A = ∑
i aiE i and 〈·〉 denotes a functional whose form depends on

the realization of the algebra F and the endomorphism E. We assume that 〈·〉 is such that

〈Ef 〉 = 〈f 〉 f ∈ F (93)

holds. Note that from this assumption it follows that 〈uEv〉 = 〈vE−1u〉, thus the adjoint of
operator E is E† = E−1.

Proposition 4.2. The bilinear map defined as

(A,B)g := tr(AB) (94)

is an inner product on g which is nondegenerate, symmetric and ad-invariant.

Proof. The nondegeneracy of (94) is obvious. The symmetricity follows from the definition by
using (93). The ad-invariance is a consequence of the associativity of multiplication operation
in g, see lemma 2.8. �

Let us mention now a few standard realizations of the algebra of shift operators (90):

• The first one is given by the shift operators on a discrete lattice. In this case, the dynamical
functions are ui : Z → K and Emu(n) := u(n + m). The form of the functional from
(92) is 〈f 〉 := ∑

n∈Z
f (n).

• The second realization is given by the shift operators on a continuous lattice. Now
ui : � → K are smooth functions of x, where � = S

1 or � = R, if ui are from the
Schwartz space. In this case the shift operator is Emu(x) := u(x + m�), where � is a
parameter. In this case the functional is just integration, i.e., 〈f 〉 := ∫

�
f (x) dx.

• The third realization is for q-discrete functions ui : Kq → K, where Kq := qZ ∪ {0} for
q �= 0. Here Emu(x) := u(qmx) and 〈f 〉 := ∑

n∈Z
f (qn).

All the above realizations lead to the construction of lattice soliton systems: discrete,
continuous and q-discrete, respectively. More realizations can be made by means of the
discrete one-parameter groups of diffeomorphisms [10] or by means of jump operators on
timescales [12, 43]. Note that in the continuous limit the algebra of shift operators on lattices
gives the Poisson algebra for (78) with r = 1. Thus, the quasi-classical limit of lattice soliton
systems are respective dispersionless systems. The situation in the q-discrete case is similar
[10].

The subspaces g�k−1 and g<k−1 of (90) are Lie subalgebras only for k = 1 and k = 2 and
the classical R-matrices following from the decomposition of g are (12) R = P�k−1 − 1

2 . Their
adjoints with respect to the above inner product are given by R∗ = P<2−k − 1

2 , respectively.
As a result, we have two Lax hierarchies:

Ltn = [(
L

n
N

)
�k−1, L

] = π0 dHn = π1 dHn−1 k = 1, 2, (95)

of infinitely many mutually commuting systems. Let (95) be generated by powers of
appropriate Lax operators L ∈ g of the form

L = uN EN + uN−1 EN−1 + uN−2 EN−2 + uN−3 EN−3 + · · · , (96)

where uN = 1 for k = 1.
The bi-Hamiltonian structure of the Lax hierarchies (95) is defined by the compatible (for

fixed k) Poisson tensors given by formulae (34),

π0 dH = [L, (dH)<k−1] + ([dH,L])<2−k

and

π1 dH = 1
2 ([L, (L dH + dHL)<k−1] + L([dH,L])<2−k + ([dH,L])<2−kL)

+ (2 − k)[(E + 1)(E − 1)−1 free([dH,L]), L], (97)
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where the operation (E − 1)−1 is the formal inverse of (E − 1). The second Poisson tensor is
a Dirac reduction of (38) as in this case R̃ = R +

(
k − 3

2P0
)

satisfies the related condition.
The differentials dH(L) of functionals H(L) ∈ C∞(g) for (96) have the form dH =∑∞

i=2−k E i−N δH
δuN−i

and the respective Hamiltonians (29) are

Hn(L) = N

N + n
tr

(
L

n
N

+1
)

N �= −n.

The theory of lattice soliton systems of Toda type with Lax representations given by
means of the shift operators was introduced for the first time by Kupershmidt in [53]. This
class of systems was investigated, from the point of view of the classical R-matrix formalism
applied to the algebra of shift operators, in [11, 64].

Example 4.3. Consider the case of k = 1 with (96) normalized as L = E +
∑∞

i=0 uiE−i . The
first chain from the Lax hierarchy (95) has the form

Lt1 = [(L)�0, L] = π0 dH1 = π1 dH0 ⇐⇒ (ui)t1 = (E − 1)ui+1 + ui(1 − E−i )u0, (98)

and its explicit bi-Hamiltonian structure is given by

π
ij

0 = Ejui+j − ui+jE
−i

π
ij

1 =
i∑

k=0

[ukE
j−kui+j−k − ui+j−kE

k−iuk + ui(E
j−k − E−k)uj ]

+ ui(1 − Ej−i )uj + Ej+1ui+j+1 − ui+j+1E
−i−1

together with the Hamiltonians H0 = 〈u0〉 and H1 = 〈
u1 + 1

2u2
0

〉
.

Assume now that the dynamical fields depend on an additional variable y ∈ S
1. Then after

the central extension procedure with the Maurer–Cartan 2-cocycle (56) the (2+1)-dimensional
Lax hierarchy takes the form (58) [16]

Ltn = [(dCn)�k−1, L − α∂y] = π0 dCn k = 1, 2,

for the Lax operator (96) with N > 1, where dCn = ∑∞
i=0 an−iEn−i are solutions to (57),

[dCn,L − α∂y] = 0. The Poisson tensor (59) is given by

π0 dH = [L − α∂y, (dH)<k−1] + ([dH,L − α∂y])<2−k,

and the Dirac reduction is not required.

Example 4.4. The case of k = 1. An example of finite field reduction. The Lax operator is
given by L = E + u + vE−1. Then for (dC1)�0 = E + u we have

Lt1 = [(dC1)�0, L − α∂y] = π0 dH1 = π1 dH0 ⇐⇒
(

u

v

)
t1

=
(

(E − 1)v + αuy

v(1 − E−1)u

)
.

The respective Poisson tensors are

π0 =
(

α∂y (E − 1)v

v(1 − E−1) 0

)
and, if α = 0, π1 =

(
Ev − vE−1 u(E − 1)v

v(1 − E−1)u v(E − E−1)v

)
.

The Hamiltonians are H1 = 〈
v + 1

2u2
〉

and H0 = 〈u〉.
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4.2. Algebra of δ-pseudo-differential operators

Consider a generalized derivative in the algebra F of dynamical fields with values in K given
by a linear map � : F → F that satisfies the generalized Leibniz rule

�(uv) = �(u)v + E(u)� (99)

for an algebra automorphism E : F → F . If E = 1, then � is an ordinary derivative.
According to (99) we define a generalized differential operator

δu = �(u) + E(u)δ. (100)

In (100) and in all subsequent expressions, � and E act only on the nearest function on their
right-hand side. As above, expression (100) is a counterpart of an ordinary differential operator
∂ such that ∂u = ux + u∂ . Using (100) we have

δ−1u = E−1uδ−1 + δ−1�†uδ−1 = E−1uδ−1 + E−1�†uδ−2 + E−1�†2
uδ−3 + · · · ,

where �† := −�E−1.
Hence, we can further define an algebra of δ-pseudo-differential operators

g = g�k ⊕ g<k =
⎧⎨⎩∑

i�k

uiδ
i

⎫⎬⎭ ⊕
{∑

i<k

uiδ
i

}
, (101)

where ui ∈ F . The above algebra is noncommutative and associative. The Lie structure on g

is given by the commutator [A,B] = AB − BA. In fact, we have the following result.

Proposition 4.5. The algebra (101) generated by the rule of the form (100) is associative if
and only if � : F → F satisfies (99) and E : F → F is an algebra automorphism.

We omit the proof, which can be done by induction, and it suffices to consider the
associativity condition, (AB)C = A(BC), only for A = δi, B = bδj and C = c, where
a, b, c ∈ F .

In fact, we will consider only two most important special cases of generalized derivatives
and δ-pseudo-differential operators:

• The first case is the ordinary derivative, i.e., (99) with E = 1. Thus let F consist of
smooth functions ui : � → K of x, where � = S

1 or � = R (if ui belong to the Schwartz
space). Thus � = ∂x , and we let δ := ∂ . In this case, g is the algebra of standard
pseudo-differential operators with the trace form given by

tr A = 〈res A〉 =
∫

�

res A dx A =
∑

i

ai∂
i ∈ g, res A := a−1. (102)

• The second case is the generalized derivative given by a difference operator. Thus, let

� = 1

μ
(E − 1) �⇒ δ = 1

μ
(E − 1),

where μ is constant, E is an algebra automorphism and E is a shift operator such that
(91) holds, see the realizations from the previous section. In particular, in the continuous
lattice case:

�f (x) = f (x + �) − f (x)

�
, Ef (x) = f (x + �), μ = �,

and in the q-deformed case:

�f (x) = f (qx) − f (x)

q − 1
, Ef (x) = f (qx), μ = q − 1.
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Here the trace form is exactly the same as in the case of shift operators algebra from
previous section (92). Thus, we have to consider the restriction (93) again, which is now
equivalent to 〈�f 〉 = 0. Note that δ-pseudo-differential operators can be represented
uniquely by shift operators, with the convention that the δ-operators of negative orders
are expanded into shift operators of negative orders as well. Note that in this case
�† = −�E−1.

In the quasi-classical limit, the algebra of standard pseudo-differential operators gives
the Poisson algebra with canonical Poisson bracket (78) for r = 0. Thus, in dispersionless
limit continuous soliton systems yield respective dispersionless systems. In the case when
difference operator � is given on lattices, the continuous limit of the algebra of pseudo-δ-
differential operators is actually given by the algebra of standard pseudo-differential operators.
Thus, in contrast to the previous case, the quasi-classical limit of discrete soliton systems yields
continuous soliton systems. This situation is similar in the q-deformed cases [12].

The reason why we consider both cases, i.e., continuous and discrete, is the fact that they
can be unified into a single consistent scheme using the so-called timescales [12, 43, 97].
This scheme also includes soliton systems with spatial variable belonging to the space being
a composition of continuous and discrete intervals. In [97], the trace formula on the algebra
of pseudo-δ-differential operators is unified to the form that covers all the above realizations
as well the cases with nonconstant μ.

Proposition 4.6. The inner product (27) on g defined by means of traces (102) and (92) in
both cases is nondegenerate, symmetric and ad-invariant.

Proof. In the first case of ordinary derivative nondegeneracy is obvious, the symmetricity
follows from integration parts and the fact that integrals of total derivatives vanish. The ad-
invariance is a consequence of lemma 2.8. In the second case of difference operators the proof
follows from proposition 4.2 and the fact that δ-pseudo-differential operators can be expanded
by means of shift operators. �

In general, the subspaces g�k and g<k are Lie subalgebras of g (101) only for k = 0 and
k = 1. However, if E = 1 they are Lie subalgebras also for k = 2. The classical R-matrices
following from the decomposition of g are R = P�k − 1

2 . Hence, we have the following Lax
hierarchies of commuting evolution equations:

Ltn = [(
L

n
N

)
�k

, L
] = π0 dHn = π1 dHn−1 k = 0, 1 (103)

and for k = 2 if E = 1. The infinite-field Lax operators L ∈ g generating (103) are given in
the form

L = uNδN + uN−1δ
N−1 + uN−2δ

N−2 + uN−3δ
N−3 + · · · N � 1, (104)

where in general for k = 0 the field uN is time-independent; if E = 1 then for k = 0 the field
uN−1 is also time independent and for k = 1 the same for the field uN .

The explicit form of the differentials dH = ∑
i δ

−i−1γi with respect to general Lax
operator (104) has to be such that (16) is valid. See example 4.8. In the case of E = 1 we
have γi = δH

δui
. The Hamiltonians (29) are given by

Hn(L) = N

N + n
tr

(
L

n
N

+1
)

N �= −n.

We will consider the Hamiltonian structures of (103) only for k = 0. Thus, for k = 0 we
have R∗ = −R. Hence the linear Poisson tensor is given by (34),

π0 dH = [(dH)�0, L] − ([dH,L])�0. (105)
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The case of quadratic Poisson tensor is more complex. For the pseudo-differential operators,
when E = 1, the quadratic Poisson tensor is given by

π red
1 dH = (L dH)�0L − L(dHL)�0 +

1

N

[
∂−1
x (res[dH,L]), L

]
, (106)

after Dirac reduction applied to (38). In the case of difference operators (E �= 1), as the
decomposition for k = 0 of the algebra of δ-pseudo-differential operators (101) coincides
with the decomposition of the algebra of purely shift operators (90) for k = 1, the quadratic
Poisson tensor is given by (97), see [64, 97] for further details.

The pseudo-differential case (E = 1) of (103) with k = 0 and finite-field reductions,
given by constraint ui = 0 for i < 0, is the well-known Gelfand–Dickey hierarchy [40]. More
details of the R-matrix formalism applied to the algebra of pseudo-differential operators for
the remaining values of k can be found in [49] or [8].

Example 4.7. Consider the infinite-field case k = 0 of (104) in the ordinary derivative case
E = 1, i.e., L = ∂ +

∑∞
i=0 ui∂

−i−1. This is the case of the well-known KP hierarchy [23].
Then we find the first nontrivial dispersive chain from (80),

Lt2 = [(L2)�0, L] = π0 dH2 = π1 dH1

⇐⇒ (ui)t2 = (ui)2x + 2(ui+1)x − 2
i∑

k=1

(−1)k
(

i

k

)
ui−k(u0)kx,

where (L2)�0 = ∂2 + 2u0. The bi-Hamiltonian structure is given by linear

π
ij

0 =
j∑

k=1

(
j

k

)
∂k
xui+j−k −

i∑
k=1

(−1)k
(

i

k

)
ui+j−k∂

k
x

and quadratic Poisson tensor

π
ij

1 =
j+1∑
k=1

(
j + 1

k

)
∂k
xui+j−k+1 −

i+1∑
k=1

(−1)k
(

i + 1
k

)
ui+j−k+1∂

k
x

+
j−1∑
l=0

[
j−l−1∑
k=1

(
j − l − 1

k

)
ul∂

k
xui+j−k−l−1 −

i∑
k=1

(−1)k
(

i

k

)
ui−k+l∂

k
xuj−l−1

]

−
j−1∑
l=0

i∑
k=0

j−l−1∑
s=1

(−1)k
(

i

k

) (
j − l − 1

s

)
ui−k+l∂

k+s
x uj−l−s−1,

that are obtained from (105) and (106), respectively. The respective Hamiltonians are

H1 =
∫ ∞

−∞
u1 dx H2 =

∫ ∞

−∞

(
u2

0 + u2
)

dx.

Example 4.8. The case of k = 0. In this example, we present the associated integrable
systems and their Hamiltonian structures in the form that is valid in both continuous and
discrete cases. In the first case, E = 1, μ = 0 and � = −�† = ∂x .

Let the Lax operator be given in the form

L = δ + μψϕ + ψδ−1ϕ. (107)

Then the first and the second flows from the Lax hierarchy (95) are

ψt1 = μψ2ϕ + �ψ,

ϕt1 = −μϕ2ψ − �†ϕ
(108)
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and

ψt2 = μ2ψ3ϕ2 + 2ψ2ϕ + �2ψ + �(μψ2ϕ) + 2μψϕ�ψ + μψ2�†ϕ

ϕt2 = −μ2ψ2ϕ3 − 2ψϕ2 − �†2
ϕ − �†(μψϕ2) − μϕ2�ψ − 2μψϕ�†ϕ.

(109)

For the Lax operator (107) the differential of a functional H such that (16) is valid is given
by

dH = 1

ϕ

δH

δψ
− 1

ψ
�†

(
1

ϕ

)
�−1A − δ

1

ψϕ + μψ�†ϕ
�−1A,

where A = ψ δH
δψ

− ϕ δH
δϕ

, and �−1 is a formal inverse of �. The linear and quadratic Poisson
tensors take the form [97],

π0 =
(

0 1
−1 0

)
, π1 =

(−μψ2 − 2ψ�−1ψ � + 2μψϕ + 2ψ�−1ϕ

−�† + 2ϕ�−1ψ −μϕ2 − 2ϕ�−1ϕ

)
,

while the Hamiltonians are

H0 = 〈ψϕ〉, H1 = 〈
1
2μψ2ϕ2 + ϕ�ψ

〉
,

H2 = 〈
1
3μ2ψ3ϕ3 + ψ2ϕ2 + ϕ�2ψ + μψϕ2�ψ + μψ2ϕ�†ϕ

〉
.

In particular, when E = 1, μ = 0 and � = ∂x the above bi-Hamiltonian hierarchy is
precisely the bi-Hamiltonian field soliton AKNS hierarchy [67]. In this case the first nontrivial
flow is the second one (109), i.e., the AKNS system. When � is the difference operator, we
obtain in particular the lattice [64] and the q-discrete counterparts of the AKNS hierarchy,
where the first nontrivial flow is (108).

In fact, this example is more general and also includes more complex situations when μ

is non-constant (time-independent) function on R, for the details we send the reader to [97].

Let g be the algebra of pseudo-differential operators (with respect to x), for which the
coefficients depend on two independent spatial variables x and y. The central extension
procedure with (56) yields the following Lax hierarchy (58) [16]:

Ltn = [(dCn)�k, L − α∂y] = π0 dCn,

where k = 1, 2 or k = 3 and L = uN∂N +uN−1∂
N−1 +uN−2∂

N−2 +· · ·, with uN = 1, uN−1 = 0
for k = 0 and only uN = 1 if k = 1. The Lax hierarchies are generated by
dCn = ∑∞

i=0 an−i∂
n−i solving (57), i.e. [dCn,L − α∂y] = 0. The associated Poisson tensor

(59) is given by

π0 dH = [(dH)�0, L − α∂y] − ([dH,L − α∂y])�0,

and requires no Dirac reduction.

Example 4.9. The case of k = 0 with the Lax operator of the form L = ∂2 + u. Then, for
(dC3)�0 = ∂3 + 3

2u∂ + 3
4

(
ux + α∂−1

x uy

)
we obtain the (2+1)-dimensional KP equation

Lt3 = [(dC3)�0, L − α∂y] = π0 dH3 = π1 dH1 ⇐⇒ ut3 = 1
4uxxx + 3

2uux + 3
4α2∂−1

x uy,

where the Poisson tensors are π0 = 2∂x and, if α = 0, π1 = 1
2∂3

x +∂xu+u∂x . The Hamiltonians
are

H1 =
∫∫

�×S1

1

4
u2 dx dy H3 =

∫∫
�×S1

1

16

(
2u3 + uuxx + 3α2u∂−2

x uyy

)
dx dy.

More examples of (2+1)-dimensional field systems can be found in [16, 93], where one
can find also systems that are purely (2+1)-dimensional phenomena.
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4.3. sl(2, C) loop algebra

We will follow the scheme from section 2.10. Consider a loop algebra over the classical Lie
algebra g = sl(2, C) of traceless 2×2 nonsingular matrices, i.e., gλ = sl(2, C)[[λ, λ−1]], with
coefficients being smooth dynamical functions of variable x ∈ �. The space ui : � → K

are smooth functions of x, where � = S
1 if we assume these functions to be periodic in x

or � = R if these functions belong to the Schwartz space. The commutator defines the Lie
bracket in sl(2, C) and readily extends to gλ since (62).

We already know that there are two natural decompositions of gλ into Lie subalgebras
(63), and we consider only the one for k = 0 yielding the classical R-matrix R = P+ − 1

2 , with
P+ being the projection onto the nonnegative powers of λ.

The trace form on gλ is (69), Tr(a) = ∫
�

res tr(a) dx, where res
∑

i aiλ
i = a−1 and tr is

the standard trace of matrices. As the matrices in sl(2, C) are nonsingular, the trace tr defines
nondegenerate inner product which is also symmetric and ad-invariant. These properties
extend to gλ, and hence g∗λ ∼= gλ and ad∗ ≡ ad.

Applying the central extension procedure with the Maurer–Cartan 2-cocycle (56) (x ≡ y)

yields the Lax hierarchy given by (74) (we take α = 1), i.e.,

Ltn = [(dCn)+, L − ∂x] = · · · = πl dCn−l = · · · (110)

for the Lax operators

L = uNλN + uN−1λ
N−1 + · · · + u1−mλ1−m + u−mλ−m N � −1, (111)

where ui ∈ sl(2, C) and uN is a constant matrix. The Lax hierarchy (110) is generated by
dCn = λn dC0 such that dC0 = ∑∞

i=0 aiλ
i , where ai ∈ sl(2, C), satisfies [dC0, L − ∂x] = 0.

For a given functional H ∈ C∞(gλ) of (111) its differential has the form

L = δH

δu−m

λm−1 +
δH

δu1−m

λm−2 + · · · +
δH

δuN−1
λ−N,

where

δH

δu
=

(
1
2

δH
δu11

δH
δu21

δH
δu12

− 1
2

δH
δu11

)
for u =

(
u11 u12

u21 −u11

)
.

The multi-Hamiltonian structure for (110) is given by (77)

πl dH = [(λl dH)+, L − ∂x] − λl[dH,L − ∂x]+. (112)

For the general Lax operators (111), if N � l � −m for N � 0 and 0 � l � −m for N = −1
then the Dirac reduction of (112) is not required.

Example 4.10. Consider the Lax operator of the form

L =
(−i 0

0 i

)
λ +

(
0 q

r 0

)
, i = √−1. (113)

Then we find that

dC0 =
(−i 0

0 i

)
+

(
0 q

r 0

)
λ−1 +

(− i
2 rq i

2qx

− i
2 rx

i
2 rq

)
λ−2 + · · · .

Hence, from (110) we obtain the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy [1](
q

r

)
t1

=
(

qx

rx

)
,

(
q

r

)
t2

=
(

i
2qxx − irq2

− i
2 rxx + ir2q

)
,

(
q

r

)
t3

=
(

− 1
4qxxx + 3

2 rqqx

− 1
4 rxxx + 3

2 rqrx

)
, . . . .
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The bi-Hamiltonian structure is given by the Poisson tensors (112)

π0 =
(

0 −2i
2i 0

)
π red

1 =
(

2q∂−1
x q ∂x − 2q∂−1

x r

∂x − 2r∂−1
x q 2r∂−1

x r

)
with the hierarchy of Hamiltonians

H1 =
∫

�

i

2
qxr dx, H2 =

∫
�

1

4
(q2r2 − qxxr) dx, H3 =

∫
�

i

8
(3qqxr

2 − qxxxr) dx, . . . .

Note that the need for the Dirac reduction for the Poisson tensor π red
1 follows from the fact

that (113) is not the most general Lax operator (111) from gλ with N = 1 and m = 0.
The reduction q = ψ, r = ψ∗ of the above AKNS hierarchy yields the nonlinear

Schrödinger hierarchy, while the reductions q = iu, r = i and q = r = iv give rise to
the KdV and the mKdV hierarchies, respectively.
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